Effect of temperature and initial pH on biohydrogen production from palm oil mill effluent: long-term evaluation and microbial community analysis
نویسندگان
چکیده
Anaerobic sludge from palm oil mill effluent (POME) treatment plant was used as a source of inocula for the conversion of POME into hydrogen. Optimization of temperature and initial pH for biohydrogen production from POME was investigated by response surface methodology. Temperature of 60oC and initial pHof 5.5 was optimized for anaerobic microflora which gave a maximum hydrogen production of 4820 ml H2/l-POME corresponding to hydrogen yield of 243 ml H2/g-sugar. Total sugar consumption and chemical oxygen demand (COD) removal efficiency were 98.7% and 46%, respectively. Long-term hydrogen production in continuous reactor at HRT of 2 days, 1 day and 12 hrs were 4850 ± 90, 4660 ± 99 and 2590 ± 120 ml H2/l-POME, respectively. Phylogenetic analysis of the mixed culture revealed that members involved hydrogen producers in both batch and continuous reactors were phylogenetically related to the Thermoanaerobacterium thermosaccharolyticum. Batch reactor showed more diversity of microorganisms than continuous reactor. Microbial community structure of batch reactor was comprised of T. thermosaccharolyticum, T. bryantii, Thermoanaerobacterium sp., Clostridium thermopalmarium and Clostridium NS5-4, while continuous reactor was comprised of T. thermosaccharolyticum, T. bryantii and Thermoanaerobacterium sp. POME is good substrate for biohydrogen production under thermophilic condition with Thermoanaerobacterium species play an important role in hydrogen fermentation.
منابع مشابه
Dark Hydrogen Fermentation From Paper Mill Effluent (PME): The influence of Substrate Concentration and Hydrolysis
Paper mill effluent (PME) was used as an organic feedstock for production of biohydrogen via dark fermentation using heat-shock pretreated anaerobic sludge under mesophilic conditions. The influence of substrate concentration (5, 10 and 15 g-COD/L) and the initial pH (5 and 7) on the efficiency of dark hydrogen fermentation from PME were investigated. The highest hydrogen yield of 55.4 mL/g-COD...
متن کاملBiohydrogen generation from palm oil mill effluent using anaerobic contact filter
In this study treatment of palm oil mill effluent was carried out with the intention to produce hydrogen during the anaerobic degradation process. The hydrogen generating microflora was isolated from the cow dung based on pH adjustment (pH 5) coupled with heat treatment (2 h). The microflora was initially tested for its hydrogen generating capability for varying fermentation pH of 4, 5, 6 and 7...
متن کاملPhytoremediation of Palm Oil Mill Effluent by using Pistia Stratiotes Plant and Algae Spirulina sp for Biomass Production (RESEARCH NOTE)
Producing crude palm oil (CPO) will have side effect on producing palm oil mill effluent (POME). Besides of high COD /BOD contents, POME still contains high amount of nutrients (nitrogen, phosphor and mineral). Traditional treatment of palm oil mill effluent using facultative anaerobic method not fully eliminated COD and BOD into allowable limit. The objective of this research was to utilize p...
متن کاملThe Effect of Fe Concentration on the Quality and Quantity of Biogas Produced From Fermentation of Palm Oil Mill Effluent
The purpose of this research is to study the effect of Fe concentration as a trace metal on the quality and quantity of biogas produced from the fermentation of palm oil mill effluent (POME). Raw POME as feed was obtained from one of the palm oil mills belong to PTPN IV, other materials used were hydrochloric acid, sodium bicarbonate, and trace metals. Observed variables were volume of biogas, ...
متن کاملTreatment of Palm Oil Mill Effluent by a Microbial Consortium Developed from Compost Soils
A method for the aerobic treatment of palm oil mill effluent (POME) was investigated in shake-flask experiments using a consortium developed from POME compost. POME was initially centrifuged at 4,000 g for 15 min and the supernatant was enriched with (NH4)2SO4 (0.5%) and yeast extract (0.25%) to boost its nitrogen content. At optimum pH (pH 4) and temperature (40°C) conditions, the chemical oxy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011